000 | 00756nam a22001937a 4500 | ||
---|---|---|---|
003 | BDCtgAUW | ||
005 | 20250620181159.0 | ||
008 | 250616b bg ||||| |||| 00| 0 eng d | ||
020 | _a9780262047074 | ||
040 |
_aBDCtgAUW _cBDCtgAUW _dBDCtgAUW |
||
050 | _aQ325.75 .S84 | ||
100 |
_aSugiyama, Masashi _eauthor _977619 |
||
245 |
_aMachine Learning from Weak Supervision : _bAn Empirical Risk Minimization Approach |
||
260 |
_aCambridge, Massachusetts : _bThe MIT Press, _c[2022] |
||
300 |
_axv, 295 pages : _b illustrations (some color) ; _c24 cm. |
||
650 |
_aAn overview of machine learning from data that is easily collectible, but challenging to annotate for learning algorithms _977620 |
||
887 |
_28 _aPapia Akter |
||
942 |
_2lcc _cBK _n0 |
||
999 |
_c14573 _d14573 |
||
888 | _28 |