000 00756nam a22001937a 4500
003 BDCtgAUW
005 20250620181159.0
008 250616b bg ||||| |||| 00| 0 eng d
020 _a9780262047074
040 _aBDCtgAUW
_cBDCtgAUW
_dBDCtgAUW
050 _aQ325.75 .S84
100 _aSugiyama, Masashi
_eauthor
_977619
245 _aMachine Learning from Weak Supervision :
_bAn Empirical Risk Minimization Approach
260 _aCambridge, Massachusetts :
_bThe MIT Press,
_c[2022]
300 _axv, 295 pages :
_b illustrations (some color) ;
_c24 cm.
650 _aAn overview of machine learning from data that is easily collectible, but challenging to annotate for learning algorithms
_977620
887 _28
_aPapia Akter
942 _2lcc
_cBK
_n0
999 _c14573
_d14573
888 _28